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Abstract The problem of transient heat transfer and growth of solid in the inviscid stagnation
flow when phase change from liquid to solid occurs is considered. A fast and accurate numerical
scheme is developed to determine the instantaneous temperature distribution in both solid and
liquid phases and the growth rate of solid directly, without iterative calculation. The solution of
the dimensionless governing equations is dependent on the three dimensionless parameters. The
characteristics of the transient heat transfer and solidification process for all the parameters are
elucidated.

Nomenclature
A = potential flow strain rate
CS = specific heat of solid
erf �x� = error function
erfc�x� = complementary error function,

1ÿ erf �x�
K = thermal conductivity
KR = ratio of thermal conductivity,

KS=KL

L = latent heat
Log(x) = Log10�x�
QS�t� = heat flux at the surface of solid,

KS �@TS�y; t�=@y� at y � 0
QL�t� = heat flux at the liquid side of solid-

liquid interface,
KL�@TL�y; t�=@y� at y � Y�t�

Qsteady = steady-state heat flux,
QS�t� � QL�t� � Qsteady at t !1

Ste = Stefan number, CS�TF ÿ TC�=L
T = temperature
TC = cold temperature of solid surface
TF = freezing temperature of liquid
TH = hot temperature of liquid
t = time
� = vertical velocity component of fluid
Y�t� = thickness of solid phase
Yeq = solid thickness at equilibrium state
y = axial coordinate

Greek symbols
� = thermal diffusivity
�R = ratio of thermal diffusivity, �S=�L

���� = dimensionless solid thickness
�eq = dimensionless solid thickness at

equilibrium state
� = dimensionless axial coordinate,������������

A=�L

p
y

� = transformed coordinate, �=����
�L = dimensionless temperature in liquid

region, �TL ÿ TH �=�TF ÿ TH �
�S = dimensionless temperature in solid

region, �TS ÿ TC�=�TF ÿ TC�
�R = ratio temperature,

�TH ÿ TF�=�TF ÿ TC�
� = density
� = growth parameter in Neumann

problem
� = dimensionless time, At

Subscripts
L = liquid
S = solid
1 = infinity
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1. Introduction
Heat transfer problems in the freezing process have attracted considerable
attention in view of both their theoretical interest and their practical
applications such as crystal growth, casting, welding, and spray forming. Since
the work by Stefan (Carslaw and Jaeger, 1959), many authors have studied the
phase-change problems without fluid flow (Muehlbauer and Sunderland, 1965;
Hsieh, 1995), and with forced convection (Savino and Siegel, 1969; Epstein,
1976) or natural convection (Benard et al., 1986) in the melt. In the problems
with forced convection, most of the studies assumed the rate of convective heat
transfer from the liquid side of solid-liquid interface as a constant, and
determined the temperature distribution in solid and the location of solid-liquid
interface (Savino and Siegel, 1969; Epstein, 1976). However, the phase-change
process can be affected by the transient development of temperature
distribution in liquid and vice versa. Recently, Yoo (1991, 1997) considered the
transient behaviour of the temperature distribution in both solid and liquid
phases and the freezing rate in the rotating-disk-revolving-fluid system. On the
other hand, Rangel and Bian (1995, 1996) and Yoo (1999) investigated an
inviscid stagnation-flow solidification problem. Both the rotating-disk-
revolving-fluid system and the stagnation-flow solidification problem have
forced fluid flows towards the solid-liquid interface, and accordingly many
similar characteristics were found.

In this study, we consider the inviscid stagnation-flow solidification problem
(Figure 1), which is important in engineering applications such as solidification
of a droplet impinging on a cold substrate in spray processes. The fluid flows
toward the solid. Initially, the fluid is kept at a uniform temperature, and the
temperature of the substrate is suddenly lowered to the temperature below the
freezing point and maintained constant. As a result, solidification occurs at the
surface of the solid, and the solid grows with time. If there is no fluid flow, then
this problem becomes the well-known Stefan problem with Neumann's solution
(Carslaw and Jaeger, 1959). Rangel and Bian studied this problem with an
iterative numerical method (Rangel and Bian, 1995), and with a method of
quasi-steady approximation (Rangel and Bian, 1996). They focused the main
attention on the growth of solid and the existence of an asymptotic limit of the
solid thickness. On the other hand, Yoo (1999) obtained an analytic solution at

Figure 1.
Definition sketch
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the initial stage of freezing by expanding it in powers of time, and showed the
effect of stagnation flow on the pure conduction problem of Neumann (Carslaw
and Jaeger, 1959).

The main physical quantities in the present problem are the growth of solid
and the heat transfer rate at the surface of solid and the liquid side of solid-
liquid interface. At first, we obtain the governing equations expressed with the
three dimensionless parameters of �R=KR; Ste, and �R. And we develop a fast
and accurate numerical scheme using a body-fitted coordinate. The numerical
scheme directly determines the instantaneous temperature distribution and the
solid thickness, without iterative calculation, and allows large time steps. The
characteristics of the heat transfer and growth of solid for all the variables are
elucidated.

2. Governing equations and numerical method
We consider the inviscid stagnation flow impinging on the surface of solid
(Figure 1). Initially �t � 0�, the fluid is kept at a uniform temperature
TH �TH > TF�. For t > 0, the temperature of the substrate is suddenly lowered
to TC�TC < TF� and maintained constant. We assume that the thermophysical
properties of solid and liquid phases are constant, and the density change of the
material upon freezing is neglected so that there is no fluid flow induced by the
volumetric change in the phase-change process. Under these assumptions, the
energy equations (Yoo, 1991; Rangel and Bian, 1996) governing the
temperature distributions in the solid and liquid phases can be written as

@TS

@t
� �S

@2TS

@y2
at 0 < y < Y�t� �1�

@TL

@t
ÿ 2A�yÿ Y�t�� @TL

@y
� �L

@2TL

@y2
at y > Y�t� �2�

In equation (2), the second term represents the convective term created by the
inviscid stagnation flow with vertical velocity component of v � ÿ2A�yÿ Y�t��.
At the solid-liquid interface, y � Y�t�, where the change of state occurs, the
energy balance (Carslaw and Jaeger, 1959) is maintained:

KS

@TS

@y
ÿ KL

@TL

@y
� �L

dY

dt
at y � Y�t� �3�

Additional boundary conditions are

TS � TC at y � 0;TS � TL � TF at y � Y�t�;TL � TH at y!1 �4�
In addition, prior to the onset of solidification, the temperature of liquid is
uniform and is equal to TH . The heat fluxes at the surface of solid (QS) and the
liquid side of solid-liquid interface (QL) are defined as
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QS�t� � ÿKS

@TS�y; t�
@y

� �
at y � 0 �5�

QL�t� � ÿKL
@TL�y; t�

@y

� �
at y � Y�t� �6�

QS�t� and QL�t� are of the same value, QS�t� � QL�t� � Qsteady, at t !1.
Introducing the following dimensionless variables

� � At; � �
������
A

�L

s
y; �S � TS ÿ TC

TF ÿ TC

; �L � TL ÿ TH

TF ÿ TH

KR � KS=KL; �R � �S=�L; �R � TH ÿ TF

TF ÿ TC

; Ste � CS�TF ÿ TC�
L

�7�

the governing equations (1)-(4) are written as

@�S

@�
� �R

@2�S

@�2
at 0 < � < � �8�

@�L

@�
ÿ 2�� ÿ �� @�L

@�
� @

2�L

@�2
at � > � �9�

@�S

@�
� �R

KR

@�L

@�
� 1

�RSte

d�

d�
at � � � �10�

�S � 0 at � � 0; �S � �L � 1 at � � ����; �L � 0 at � !1 �11�
where

���� �
������
A

�L

s
Y�t� �12�

denotes the dimensionless solid thickness. It is assumed that ��0� � 0:
It is to be noted that �R=KR is one parameter in the dimensionless governing

equations (8)-(11). It is because the heat transfer rate is determined by Fourier's law
of heat conduction. The parameter of �R=KR � KL�TH ÿ TF�=KS�TF ÿ TC�
represents the ratio of the heating effect of the liquid to the cooling effect to
freeze the liquid by the cold substrate. There are several numerical methods for
the moving boundary problems (Crank, 1981). In this study, the unsteady
solution is found by applying the finite difference method (Crank, 1981;
Sparrow et al., 1978) after fixing the moving boundary for all times by a
coordinate transformation. Let us introduce the following coordinate
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transformation to fix the moving boundary of the position of the solid-liquid
interface � � ����at � � 1.

� � �

���� �13�

Equations (8)-(11) are transformed as

�2 @�S

@�
ÿ �

2

d�2

d�

@�S

@�
� �R

@2�S

@�2
at 0 < � < 1 �14�

�2 @�L

@�
ÿ �

2

d�2

d�

@�L

@�
ÿ 2�� ÿ 1��2 @�L

@�
� @

2�L

@�2
at � > 1 �15�

@�S

@�
� �R

KR

�L

@�
� 1

2�RSte

d�2

d�
at � � 1 �16�

�S � 0 at � � 0; �S � �L � 1 at � � 1; �L � 0 at �!1 �17�
The instantaneous heat fluxes at the surface of solid and the liquid side of solid-
liquid interface are expressed as the following equations:

QS���
Qsteady

�
���
�
p

KR

2��R

@�S

@�
at � � 0 �18�

QL���
Qsteady

� ÿ
���
�
p
2�

@�L

@�
at � � 1 �19�

It can be shown (Yoo, 1997, 1999) that the solution in the limit of � ! 0 is the
Neumann's solution (Carslaw and Jaeger, 1959) by letting �S;L � �S;L���2

���
�
p ��:

�S��� � erf ����
erf ��� �20�

�L��� � erfc�� ������
�R
p

��
erfc�� ������

�R
p � �21�

���� � 2�
��������
�R�
p �22�

exp�ÿ�2�
erf ��� ÿ

�R
������
�R
p

exp�ÿ�2�R�
KRerfc�� ������

�R
p � �

�������
��

Ste

r
�23�
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The solution of equations (20)-(23) at a sufficiently small time of �0 � 10ÿ5 is
used as the initial field to start the numerical calculation. An implicit finite-
difference scheme was used for the energy equations (14) and (15). To solve the
resulting difference equations for the temperature distributions at � j�1, the
values of �2 and d�2=d� � 2��d�=d�� at � j�1 are needed as input. The value of
�d�=d��j�1 is obtained from equation (16) by introducing @�S=@�, @L=@ and �
which are known at � j. And if @�S=@� and @�L=@� in equation (16) are regarded
as constants during the interval � j to � j�1 and equal to their values at � j, then
this equation can be written as

� d� � Gjd�; Gj : constant at � j

which gives

�j�1 �
�������������������������������������������
��j�2 � 2Gj�� j�1 ÿ � j�

q
�24�

The calculated �j � 1 in equation (24) is used as an input value to the finite
difference equations.

One hundred grid points were developed uniformly throughout the solid
region, and 500 grid points were developed non-uniformly throughout the
liquid region according to the relation �i � �1��i ÿ 1�=�N ÿ 1��1:5, where N is
the total number of grid points in the liquid region. The resulting difference
equations for the temperature distribution were solved non-iteratively at each
time step by using the tridiagonal matrix algorithm. The accuracy of the
numerical scheme was checked with the exact solution of Neumann (Carslaw
and Jaeger, 1959) and the exact steady-state solution of equations (8)-(11), and
the scheme was proved to be fast and accurate. In solving the Neumann
problem, agreement with the exact solution to within 0.2 percent was attained
for the solid thickness Y�t�. When there was fluid flow, the solution
approached the exact steady-state solution as time went on. At the initial stage
of solidification, the very small time step of �� � 10ÿ6=Ste was used, and the
time step was sequentially increased to a certain maximum value depending on
the parameters. The implicit finite-difference scheme applied to the energy
equations (14) and (15) allows large time steps. Thus, the numerical scheme is
very fast, since the temperature distribution and the solid thickness at each
time step are determined directly without iterative calculation. The real
computation time to calculate up to ���� � 0:99�eq was approximately 1 � 3
minutes, with pentium personal computer (90MHz).

3. Results and discussion
The governing equations (8)-(11) show that the solution of the present problem
is dependent on the three dimensionless parameters of �R=KR, Ste, and �R. And
we make the parametric study for the characteristics of the growth of solid and
heat transfer in the range of 0:1 � �R=KR � 10, 0:01 � Ste � 1, and



Numerical
investigation of

heat transfer

73

0:1 � �R � 10. In most of the phase change problems such as crystal growth,
casting, and welding, the Stefan number is less than 1, since the latent heat is
very large in general.

At first, the thickness of solid, ����, for several values of �R=KR, Ste, and �R

are presented in Figure 2. The solid thickness increases monotonously with
time, and approaches a final equilibrium state. The growth rate of solid is
increased as �R or Ste increases, but is decreased as �R=KR increases. Figure 2

Figure 2.
Dimensionless solid
thickness with time:

(a) �R=KR � 0:5, 1 and 2
with Ste � 0:1 and

�R � 1; (b) Ste � 0:01,
0.03, 0.1, 0.3 and 1 with
�R=KR � 1 and �R � 1;
(c) �R � 0:1, 0.3, 1, 3 and
10 with �R=KR � 1 and

Ste � 0:1
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shows the existence of an asymptotic limit of the solid thickness. In the
Neumann problem (Carslaw and Jaeger, 1959) without fluid flow, there is no
mechanism to stop the propagation of a temperature wave emanating from the
solid-liquid interface, and the solid grows continuously with time according to
the relation Y�t� � 2

�������
�St
p

. When there is forced fluid flow towards the solid-
liquid interface, however, the fluid flow towards the solid restricts the
propagation of the wave in the liquid, and consequently the system approaches
a final equilibrium state as time goes on. The equilibrium state can be obtained
from the steady-state governing equations. Equations (8)-(11) with @=@� � 0
yield the following equilibrium state:

�S��� � �
�eq
; �L��� � erfc�� ÿ �eq�; �eq �

���
�

2

r
KR

�R

�25�

The asymptotic limit of the solidification front (�eq) shown in Figure 2 and
equation (25) shows that the equilibrium solid thickness is dependent on the
one parameter of �R=KR, but is independent of Ste and �R. The Stefan number
and the thermal diffusivity ratio are only time-governing parameters of the
solidifying process, but do not affect the final equilibrium state. On the other
hand, Rangel and Bian (1995, 1996) concluded that the temperature distribution
and the solid thickness for a large value of time (� !1) are independent of
Ste, while changes in the parameters �R, �R and KR affect the long-time
behaviour of the solution. For the parameters of Ste and �R, Figure 2(b),(c)
shows that ����0s for Ste � 0:01; 0:03; 0:1; 0:3, and 1 with �R � 1 are nearly
identical to those for �R � 0:1; 0:3; 1; 3, and 10 with Ste � 0:1, respectively. At
the initial stage of solidification (� � 1), the conduction solution of equation
(22) is valid, and we can express the solid thickness as ���� � F��R; Ste� ����p ,
for a given value of �R=KR. For the parameters in Figures 2(b),(c), the relative
error between F1 � F�1; 0:01� and F2 � F�0:1; 0:1� at which �RSte � 0:01 are
jF1 ÿ F2j=F1 � 0:027, and that between F3 � F�1; 1� and F4 � F�0:1; 10� at
which �RSte � 1 are jF3 ÿ F4j=F3 � 0:12. As time goes on, the difference in
the solid thickness ����s for different values of �R and Ste with
�RSte � constant decreases, since ����s have the same equilibrium value, if
�R=KR � constant (Figures 2(b),(c)). We can see that ���� is approximately a
function of the two parameters, �R=KR and �RSte.

Second, the transient heat fluxes at the surface of solid (QS���) and the liquid
side of solid-liquid interface (QL���) are presented in Figures 3-5. Figure 3
shows the heat fluxes for �R=KR � 0:1, 1 and 10. As �R=KR increases, both
QS���=Qsteady and QL���=Qsteady are decreased, that is, the response time of heat
transfer in both solid and liquid phases is decreased, since the maximum solid
thickness (�eq) that can be grown is inversely proportional to �R=KR (equation
(25)).

The dependency of the heat fluxes on Ste is shown in Figure 4. Figure 4(a)
represents QL���=Qsteady for Ste � 0:01; 0:03; 0:1; 0:3; 1; and the case with no
phase change. The transient stagnation point heat transfer for viscous fluid
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without phase change was investigated in the early years (Chao and Jeng, 1965;
Sano, 1981). In Figure 4(a), the curve of no phase change was obtained by
solving the equations for the transient heat transfer in inviscid stagnation flow.
When phase change is present, QL���=Qsteady is larger than that of the case with
no phase change. And the difference is increased, as Ste increases. The forced
fluid flow towards the solid-liquid interface inhibits the propagation of a
temperature front in the liquid region. If the solid grows more rapidly for larger
Ste, the propagation of the temperature front is more strongly inhibited. And
consequently, it tends to reduce the speed of approach to equilibrium state. On
the other hand, Figure 4(b) shows that QS���=Qsteady is decreased as Ste

Figure 3.
Transient heat fluxes at

the surface of solid,
QS���, and the liquid

side of solid-liquid
interface, QL���, for

several values of �R=KR

with Ste � 0:1 and
�R � 1:

(a) QL���=Qsteady;
(b) QS���=Qsteady

Figure 4.
Transient heat fluxes at

the surface of solid,
QS���, and the liquid

side of solid-liquid
interface, QL���, for

several Stefan numbers
with �R � 1 and

�R=KR � 1 and QL���
for the case with no

phase change:
(a) QL���=Qsteady;
(b) QS���=Qsteady
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increases. It is because the equilibrium solid thickness is independent of Ste,
and the solid thickness (����) reaches its quasi-steady state more rapidly for
larger Ste (Figure 2).

Figure 5 shows the heat fluxes for several values of �R. The equilibrium
state is independent of �R, and the solid grows faster for larger �R, as is the
case with Ste (Figure 2). And accordingly, the dependency of heat fluxes on the
variable �R shows the same characteristics as that for Ste. Comparing Figure 5
with Figure 4, it can be also observed that the heat fluxes (Figure 4) for
Ste � 0:01; 0:03; 0:1; 0:3, and 1 with �R � 1 are nearly identical to those
(Figure 5) for �R � 0:1; 0:3; 1; 3, and 10 with Ste � 0:1, respectively. That is,
the heat fluxes QS��� and QL��� are nearly unvarying for the changes in �R

and Ste, if �RSte � constant, as with solid thickness ���� in Figure 2.
In the above, the characteristics of the instantaneous solid thickness and the

transient heat transfer were investigated. We have observed that the combined
quantity of Y��� and QS���, QS���Y���, has a notable characteristic during
the phase-change process. In Figure 6, the behaviour of the function,
Log�QS���Y���=QsteadyYeq ÿ 1�, is presented for several values of �R=KR and
Ste. In Figure 6(a), the range of the value of F��� � �QS���=Qsteady��Y���=Yeq�
for �R=KR � 0:1 is 1 < F��� < 1:016 and that for �R=KR � 10 is
1 < F��� < 1:0018. And in Figure 6(b), the ranges for Ste � 0:01 and Ste � 1
are 1 < F��� < 1:0016 and 1 < F��� < 1:048, respectively. It can be seen that
QS���=Qsteady � Yeq=Y��� throughout the freezing process. The heat transfer
rate at the surface of solid can be investigated experimentally by measuring the
sublimation rate from naphthalene-coated surface and using the analogy
between heat and mass transfer (Tien and Campbell, 1963). The result for
�QS���=Qsteady��Y���=Yeq� in Figure 6 implies that the transient heat flux at the

Figure 5.
Transient heat fluxes at
the surface of solid,
QS���, and the liquid
side of solid-liquid
interface, QL���, for
several values of �R

with �R=KR � 1 and
Ste � 0:1:
(a) QL���=Qsteady;
(b) QS���=Qsteady
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surface of solid (QS���) can be obtained with sufficient accuracy by measuring
the instantaneous thickness of solid (Y���) or vice versa, especially for large
values of �R=KR or small Ste:

As a final observation on the effect of the parameters, their influence on the
time required to reach the quasi-steady state is shown in Figure 7 as functions
of �R=KR and Ste. In the Figure, curves (�X ), (�S), and (�L) represent the time at
which Y��X� � 0:95Yeq, QS��S� � 1:05Qsteady, andQL��L� � 1:05Qsteady,
respectively. At first, curves (�X ) and (�S) show that the time to reach
Y��� � 0:95Yeq is nearly the same as that to reach QS��� � 1:05Qsteady. The
value of ��S ÿ �X�=�X is positive, and is less than 0.004 and 0.006 in Figure 7(a)

Figure 6.
Plot of Log�QS���Y���
=QsteadyQsteadyYeq ÿ 1�
with time for several

values of �R=KR and Ste:
(a) ��R=KR�-dependency,

with �R � 1 and
Ste � 0:1;

(b) �Ste�dependency,
with �R � 1 and

�R=KR � 1

Figure 7.
Time required to reach

Y��� � 0:95Yeq��X �,
QS��� � 1:05Qsteady��S�

and
QL��� � 1:05Qsteady��L�

as functions of �R=KR

and Ste: (a) ��R=KR�-
dependency, with

�R � 1 and Ste � 0:1:
(b) �Ste�-dependency,

with �R � 1 and
�R=KR � 1
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and in (b), respectively. This result implies that the speed of approach to the
equilibrium state for the solid thickness is nearly identical to that for the heat
flux at the surface of solid. And comparing (�X ) and (�S) with (�L), we can see
that QL��� reaches its quasi-steady state value more rapidly than Y��� and
QS���. When solving a solidification problem in forced fluid flow, most of the
investigations assume a constant value of convective heat transfer from the
liquid side of solid-liquid interface, and the transient temperature distribution
in solid and the location of solid-liquid interface are determined (Savino and
Siegel, 1969; Epstein, 1976). Figure 7 shows that for small �R=KR or Ste, QL���
reaches its quasi-steady state value much faster than Y��� and QS���, and
accordingly we can consider it to be constant, QL��� � Qsteady, throughout the
freezing process. However, the difference in the speed of approach to the
equilibrium state between QL��� and Y��� becomes small as �R=KR or Ste
increases, which indicates that for large �R=KR or Ste, the transient behaviour
of the temperature distribution in liquid phase should be also considered.

4. Conclusions
We consider the transient heat transfer problem in the inviscid stagnation flow
when phase change from liquid to solid occurs. The dimensionless governing
equations have three dimensionless parameters of �R=KR, Ste and �R. The
unsteady solution is found by applying the finite difference method using
body-fitted coordinate, which directly determines the instantaneous
temperature distribution and the solid thickness, without iterative calculation.
The growth rate of solid is increased as Ste or �R becomes large, but is
decreased as �R=KR increases. The equilibrium state is dependent on �R=KR,
but is independent of Ste and �R. It is observed that QS���=Qsteady � Yeq=Y���
throughout the freezing process where Y��� is the instantaneous thickness of
solid phase, and QS��� is the transient heat flux at the surface of solid. For
small �R=KR or Ste, the transient heat flux from the liquid side of the solid-
liquid interface reaches its quasi-steady state much faster than Y��� and
QS���. However, the speed of approach to the equilibrium state for Y��� and
QS��� becomes fast, as �R=KR or Ste increases.
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